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Abstract. Predicting the spatial and temporal dynamics of invasive species is critical for successful man-
agement intervention, yet substantial uncertainty exists about how species will interact with human path-
ways when introduced to new ecosystems. We demonstrate a novel approach for quantifying uncertainty
when predicting the uptake, movement, and establishment of invasive species by combining mechanistic
modeling of the spread process with expert opinion of the demographic factors that govern species perfor-
mance. We demonstrate the utility of this approach using a case study involving the transfer potential of
nonindigenous species (NIS) in the Laurentian Great Lakes basin (GLB). A survey using structured expert
judgment was completed by 24 North American taxonomic experts, covering 60 species of NIS established
in the GLB. Experts estimated species-specific demographic parameters describing population growth and
establishment potential, which were incorporated into an existing mechanistic model of human-mediated
spread via ballast water with species-specific spread rates (number of ports or lakes invaded/year) as out-
puts. Expert judgments within each group varied widely, indicating that generalizable rates of spread
across taxa are unlikely and highlighting the value of cross-taxon comparisons. Most species were pre-
dicted to establish throughout the GLB within 10 yr, assuming status quo management conditions. Sensi-
tivity analysis for expert performance-based weighting demonstrated that most model outputs were
insensitive to weighting (<1% difference over baseline) and shows the robustness of the joint model. Over-
all, the joint expert opinion and predictive modeling method demonstrates a novel means of handling
sparse data when forecasting invasion dynamics. Divergent estimates resulted in a range of likely spread
rates, but improved upon traditional best-guess approaches. Incorporating joint methods into ecological
decision-making frameworks has clear implications for invasive species management but may also inform
other ecological scenarios where data are scarce and conservation action is urgent.
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INTRODUCTION

Forecasting the performance of nonindige-
nous species (NIS) in novel ecosystems is funda-
mental for making sound ecosystem
management decisions. In principle, identifying
the species most likely to establish and spread

allows prevention and control programs to con-
front invasions based on the greatest perceived
risk to native species and ecosystems. However,
in practice, decisions are challenging due to the
high degree of epistemic and stochastic uncer-
tainty surrounding all aspects of the invasion
process (Mack et al. 2000, Ricciardi et al. 2011),
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including how invasive species will interact with
human pathways (Essl et al. 2015). The rele-
vance of human pathways in mediating inva-
sions was identified early in the field of invasion
biology (Elton 1958) and has become increas-
ingly recognized with globalization (Sala et al.
2000, Butchart et al. 2010, Padayachee et al.
2017). Human pathways, particularly those
linked with transport and commerce, therefore
present a critical avenue for monitoring, preven-
tion, and control (Lodge et al. 2006, 2016, Wil-
son, et al. 2009). Despite evidence that “shoot
first, ask later” tactics are often the best way to
prevent the establishment of new invaders (Bax
et al. 2001), many management decisions have
demonstrated complacency to newly discovered
species in the absence of scientific knowledge
(Simberloff 2003). To navigate this impasse,
methods for increasing the accuracy of forecast-
ing are needed and would ultimately result in
more deliberate and effective prevention man-
agement decisions.

In addition to propagule pressure (Jeschke and
Strayer 2008), there are two main mechanisms
that strongly dictate invasion success—the ability
to establish reproducing populations from small
initial population sizes and the rate of population
growth (Williamson and Fitter 1996, Blackburn
et al. 2015). These two factors also influence nat-
ural dispersal and, importantly, dictate how a
species may spread across landscapes if it has the
opportunity to interact with human pathways.
Gaining a better understanding of the magnitude
of each of these factors is critical in forecasting
the extent to which invasion dynamics might
manifest in a new environment. For example,
poor ability to establish at a small introduced
population size coupled with a generally slow
population growth rate is more likely to result in
patchy establishment success, slow rates of sec-
ondary spread, and generally reduced potential
to interact with human pathways. Conversely,
high establishment success following introduc-
tion and a high population growth rate should
result in more opportunity to interact with
human pathways and the potential rapid and
accelerating movement of the new invader
throughout suitable habitat. By disentangling the
processes through which these two factors dic-
tate species performance in a novel environment,
including their potential to interact with human

pathways, the relative risk of spread is more
likely to be quantifiable.
Using models to explore complex system

dynamics and unobservable phenomena is com-
mon in ecology and can help make informed
management decisions under a series of simplify-
ing conditions (Hilborn and Mangel 1997, Irwin
et al. 2011). Models have been critical tools to
gain a better understanding of key invasion pro-
cesses, such as the relationship between initial
population size and population establishment
(i.e., the risk–release relationship; Leung et al.
2004, Wonham et al. 2013), the importance of
Allee effects in introduced populations (Kanarek
et al. 2013), and the likelihood of achieving a
desired management outcome, such as popula-
tion suppression (Tsehaye et al. 2013). However,
while models provide a sound representation of
the mechanisms underlying the invasion process,
their forecasting accuracy is often limited by a
lack of species- and site-specific information,
which can lead to tenuous assumptions about
system dynamics. For example, forecasting mod-
els may assume similar demographic rates in
native and introduced populations, expect histor-
ical rates of spread to reflect future rates of
spread (Peterson and Vieglais 2001), and assume
that species impacts are independent of trophic
conditions in the introduced range (Ricciardi
et al. 2013, Jeschke et al. 2014). These choices can
have important consequences on the projected
vs. realized ecological dynamics of invasive spe-
cies and the allocation of management resources,
illustrating the need to capture the uncertainty
associated with invasions using structured and
quantitative methods.
One approach for capturing uncertainty

involves the use of expert-elicitation methods,
which have been used to derive key information
from experts in many fields of study (e.g., engi-
neering intervention, geological exploration,
Burgman 2005; or climate change, Morgan et al.
2001, Bamber and Aspinall 2013). Expert judg-
ment is not intended to be a substitute for data
obtained through experimental or other scientific
means, but rather provides a useful method to
allow conclusions to be drawn in situations
where there are little to no data available (Cooke
1991). The use of elicited expert information has,
at times, been viewed with suspicion by the sci-
entific community due to limited control over the
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effects of bias and subjectivity of individual opin-
ions (Tversky and Kahneman 1974, Kynn 2008).
Often, scientific research aims to reduce uncer-
tainty, whereas the opinions of experts are, by
nature, indefinite (Cooke 1991, Burgman 2005).
However, well-constructed expert-elicitation
techniques aim to reconcile these differences by
capturing and quantifying uncertainty rather
than avoiding it (Aspinall 2010) and by ground-
truthing responses against known quantities,
thereby providing a transparent and standard-
ized approach to capture a range of possible out-
comes.

We show how combining contemporary expert
opinion methods with mechanistic modeling of
the interaction between invasive species and
human pathways might be incorporated within a
broader decision-making framework for invasive
species management. Although several studies
have used this method to forecast standard popu-
lation processes, such as the rates of population
increase (Murray et al. 2009, Wittmann et al.
2014a, 2014b, 2014c, Kerr et al. 2016), to our
knowledge, few have done so for multiple taxo-
nomic groups that would allow for both inter-
and intraspecific comparisons (c.f. Zhang et al.
2016). We begin by defining a standardized met-
ric based on common aspects of the invasion pro-
cess: (1) population growth rate, which
influences the probability that species will
increase in number and, thus, the potential to be
transported by human pathways, and (2) the like-
lihood of establishment at transported popula-
tion sizes, defined as the maintenance of a local,
reproductive, self-sustaining population (Lock-
wood et al. 2007), which controls the develop-
ment of new satellite populations across a
landscape and the distribution of new popula-
tions to act as sources. We parameterize the
model with probability distributions describing
demographic factors obtained through an expert-
elicitation process, with the aim of considering
how generalized patterns of spread are affected
by both population growth and establishment
probability. By comparing projected rates of
spread across a diverse group of aquatic inva-
ders, we provide a standardized index that
describes the relationship between taxonomic
group and secondary spread, measured in a man-
ner suitable for management intervention (time
required for species to saturate available sites).

Finally, by identifying species-specific trajectories
over time and space, we demonstrate how this
process can be used to inform invasive species
management in a decision-analytic framework.

METHODS

Study system
To demonstrate the utility of our approach, we

conducted a model-based assessment of NIS in
the Laurentian Great Lakes basin (GLB) includ-
ing fresh waters of the St. Lawrence River. A total
of 60 species across eight taxonomic groups were
chosen from the Great Lakes Aquatic Nonindige-
nous Species Information System (NOAA-
GLANSIS; USGS 2016) for assessment, covering
algae, bryozoans and hydrozoans, bacteria and
viruses, crayfishes, fishes, mollusks, plants, and
zooplankton and oligochaetes. A list of species
was compiled for those species not already
reported as present in all five Great Lakes and
the St. Lawrence River (n = 99) to identify those
presenting an ongoing threat of spread
(Appendix S1). To ensure the survey length
remained realistic for expert engagement while
maintaining species specificity, groups contain-
ing >15 species were randomly subsampled at
family level to reduce sample size to 60. Full
details of the geographic extent of the study area
and species selection criteria can be found in
Appendix S2.

Expert-elicitation survey
A variety of methods exist for eliciting expert

information (for review see Kuhnert et al. 2010,
Martin et al. 2012). We used structured expert
judgment (SEJ) to better understand the demo-
graphic parameters of invasive species in the
GLB. Structured expert judgment is a process
that systematically quantifies uncertainty in
expert responses as part of a comprehensive sur-
vey process by treating expert estimates as scien-
tific data (Cooke 2013). The survey was
conducted primarily to obtain species-specific
data (species establishment potential and popu-
lation growth rate). Additional information
involving ecological impact and potential mitiga-
tion measures was also elicited for a second
study. Experts were carefully selected to partici-
pate in the SEJ process based on the number of
publications and/or years of experience in
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studying or managing one or more of the taxo-
nomic groups of NIS present in the Great Lakes.
The number of taxonomic experts per species
group ranged from one (algae, and bryozoans
and hydrozoans) to 10 (fishes). Of the 24 respon-
dents, experts mainly held academic or govern-
ment positions, with an average of 20 yr of
relevant research or management experience
(Table 1). To capture the full range of expert
judgments within each taxonomic group while
adhering to SEJ principles, we used a three-point
quantitative interval method for obtaining a tri-
angular probability distribution for each
response (adapted from Speirs-Bridge et al.

2010). This approach required experts to report
minimum, modal, and maximum values for each
response, but differs from the four-point method
by Speirs-Bridge et al. (2010) fixing the confi-
dence interval to 95%. Such a method thereby
captures the full range of expert uncertainty and
improves upon a single-point best-guess esti-
mate. Expert responses were incorporated within
subsequent stages of the study as triangular
probability distributions.
Previous studies in aquatic ecology have per-

formed expert-elicitation interviews in person
(Rothlisberger et al. 2012, Wittmann et al. 2014b,
2014c) as recommended in most elicitation guide-
lines (Martin et al. 2012). While these approaches
have advantages (e.g., ensuring consistency, pro-
viding direct feedback during surveying, encour-
aging completion), there is a need for more
efficient survey methods to harness expert opin-
ion without compromising the quality of infor-
mation obtained. This study used a remote
surveying method, conducted online through a
web-hosted survey platform (SurveyMonkey
2016). Eight versions of the survey were created,
one each to elicit demographic information for
each species contained within the eight taxo-
nomic groups in the sample (Fig. 1). Regardless
of taxon, survey questions followed the same for-
mat to obtain two population demographic
parameters relating to the establishment poten-
tial of an individual species in any of the Great
Lakes: (1) propagule size, as the minimum num-
ber (density) of individuals, required for a 95%
chance of establishment (assuming ideal environ-
mental and demographic conditions), and (2) the
rate of population growth, as the minimum
length of time, required to reach maximum pop-
ulation density at a release site (see Appendix S2
for survey protocol and instrument). These
demographic parameters are referred to as estab-
lishment potential and population growth rate,
respectively, which were retained for use within
an existing mechanistic model of secondary
spread (described below; see Drake et al. 2015a).

Combining expert judgments
Given their use in estimating unknown param-

eters, expert-elicitation methods present a chal-
lenge in verifying the accuracy and confidence of
elicited values. Classical approaches are gener-
ally comprised of two components: one to verify

Table 1. List of 24 experts who participated in the
study and agreed to recognition.

Name Affiliation

Shelley Arnott Department of Biology, Queen's
University

Ashley Baldridge Elgin NOAA Great Lakes Environmental
Research Laboratory

Jonathan Bossenbroek University of Toledo
Lindsay Chadderton The Nature Conservancy
Randall M. Claramunt Michigan Department of Natural

Resources, Fisheries Division
Mohamed Faisal College of Veterinary Medicine,

Michigan State University
Crysta Gantz Portland State University, Portland,

Oregon (formerly University of
Notre Dame)

Don Jackson University of Toronto
Tim Johnson Ontario Ministry of Natural

Resources and Forestry
Reuben Keller Loyola University Chicago
Patrick M. Ko�covsk�y United States Geological Survey

(USGS)
Brian Lantry United States Geological Survey

(USGS)
Hugh MacIsaac University of Windsor
Julian Olden University of Washington
Anthony Ricciardi Redpath Museum &McGill School

of Environment, McGill University
Ed Roseman United States Geological Survey

(USGS)
Lars Rudstam Cornell University
Jeff Schaeffer USGS Great Lakes Science Center
Andrew Tucker The Nature Conservancy
Jake Vander Zanden University of Wisconsin-Madison
Brian Weidel USGS Great Lakes Science Center
Gary Whelan Michigan Department of Natural

Resources, Fisheries Division
Anonymous 1
Anonymous 2

Note: All responses were held anonymously during
analysis.
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the likelihood that an expert response is close to
a true value, a method commonly known as cali-
bration, and one that examines expert confidence
in the information provided, through the degree
of concentration of their distribution, or informa-
tiveness (Cooke 1991, Cooke and Goossens
2000). Together, calibration and information
scores can be used to create an individual perfor-
mance-based weighting system to retroactively
adjust expert responses based on these principles
(Cooke 1991, Aspinall 2010, Aspinall et al. 2016).
Calibration moves beyond simple performance
weighting in the statistical complexity of its
approach, requiring a minimum number of train-
ing questions (“seed variables”) in the expert’s
area of knowledge (McBride et al. 2012, Cooke
et al. 2014). However, when conducting a large-
scale or rapid elicitation survey, calibration meth-
ods may not be appropriate, being overly time-
intensive both to the expert and to the elicitors in
finding suitable seed variables. For our remote
survey method, covering multiple areas of exper-
tise, a large number of seed variables would have
been required to follow the classical method of
calibrating experts in SEJ (Cooke and Goossens
2000), likely increasing survey time by several
hours. Given that the arithmetic mean of all
expert judgments is considered the second-best
option when calibration is uncertain or not possi-
ble (Cooke 1991, Clemen and Winkler 1999,
McBride et al. 2012) and that calibration weight-
ing does not always outperform equal (average)
weighting (Lin and Cheng 2009, Cooke 2015), we
determined that extensive calibration was

beyond the scope of this study. We therefore
used solely a performance-based weighting
approach to examine the similarity of within-
group expert performance as a means of deter-
mining variation and potential extremes before
these parameters were tested in our model. All
experts in our study completed the same training
question at the beginning of the survey, requiring
answers within a similar, but not identical, realm
of expertise that would be relevant irrespective
of taxonomic specialism and with the true value
being known only by the elicitors following later
calculation. It is critical that experts cannot
improve their scores by seeking additional infor-
mation (Cooke 1991) and so training question
two was subsequently removed from the study
due to concerns by the authors over potentially
available information. Expert performance on
training questions was weighted for closeness to
the true value (accuracy) and the width of their
uncertainty distribution (informativeness; Cooke
1991) before being ranked against their peers.
Individual scores for experts were compiled for
accuracy of the modal value (0 = error from true
>10 d, 1 = error from true >5 d and <10 d, and
2 = error from true value true value <5 d; see
Appendix S3 for methods) and informativeness
of the distribution (0 = range did not include
true value, 1 = range included true but greater
than �2 standard deviation (SD), and 2 = range
included true less than �2 SD). Accuracy and
informativeness scores were summed to produce
an individual performance score (mi) used to
rank experts against their peers within their

Fig. 1. Individual expert performance-based weights, across all species groups (see Methods for calculation).
Expert judgments with low variation between them have a value around 1.0, with greater variation between
judgments resulting in a score over or under this value. All expert responses were treated anonymously during
analysis. AL, algae; BV, bacteria and viruses; BH, bryozoans and hydrozoans; CF, crayfishes; FS, fishes; ML, mol-
lusks; PL, plants; ZO, zooplankton and oligochaetes.
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taxonomic groups of expertise. Expert ranks
were then converted to an individual within-
group performance-based weight (Ci) expressed
as follows:

Ci ¼ n
miPn
j¼1 mj

 !
(1)

where mj is an expert’s individual within-group
performance score, and n is the total number of
experts within a species survey group. For inclu-
sion within the model, raw expert parameter esti-
mates were multiplied by individual performance
weights before an average was taken to define a
single species-specific value in each taxonomic
group. This was repeated for the minimum,
modal, and maximum values for all species.
Model scenarios were run with both raw,
unweighted responses and performance-weighted
data to assess the sensitivity of species demo-
graphic parameters to weighting and to similarly
determine the effect of weighting (vs. an
unweighted baseline set of responses) on overall
model outputs (Appendix S3).

Mechanistic model of secondary spread
Demographic factors derived from the expert-

elicitation process were joined with an existing
model of secondary spread that had been devel-
oped to capture the interactions between intro-
duced NIS and their transport and establishment
via domestic ballast-water movements in the GLB
(Drake et al. 2015a). The model is centered around
the species demographic parameters used in the
elicitation process and includes the rate of popula-
tion growth (Drake et al. 2015a) and the likelihood
of population establishment at a given transported
population size (Leung et al. 2004, National
Research Council 2011). In the model, the rate of
population growth controls the likelihood that a
given species will be taken into ballast water, a pri-
mary transport mechanism in our study system,
where increased growth rate (and resulting
increased population density) leads to a higher
probability of uptake. Population growth is mod-
eled via a logistic function, given as follows:

FðxÞ ¼ L
1� e�kðx�x0Þ (2)

where L is the maximum value of the logistic
curve, k is the steepness of the curve, and x0 is the

time in years, whereby 50% of maximum popula-
tion growth is reached. As we were primarily
interested in the value of x0, both L and kwere set
to unity to assume a set maximum growth and
no Allee effects, respectively. The likelihood of
population establishment at a transported popu-
lation size was modeled following Leung et al.
(2004) and National Research Council (2011), and
was based on the functional form of a non-Allee
establishment relationship, given as follows:

pE ¼ 1� e�aN (3)

where N is the initial population size at introduc-
tion, or propagule load, and a is the per-propag-
ule probability of establishment. In our expert
survey, we obtained estimates for components of
Eqs. 2, 3. Parameter a was elicited as the density
of individuals required for a 95% probability of
establishment and was subsequently solved for
incorporation within the model at different pop-
ulation sizes (Leung et al. 2004, National
Research Council 2011). Parameter x0 was eli-
cited as the time required for a population to
reach maximum population size and was subse-
quently reduced by 50% for inclusion in the
model. The likelihood of establishment of a spe-
cies following an individual ship trip is deter-
mined based on the range of transported
population densities of known planktonic NIS in
the GLB and the survey-derived estimated estab-
lishment probabilities (Drake et al. 2015b).
Because the model incorporates the annual num-
ber of ship trips in the GLB, secondary spread
can be derived as a rate, such as the number of
ports invaded/year or the time required for all
five lakes and the St. Lawrence River to contain
locally established populations of a species of
interest (hereafter referred to as time to satura-
tion). The triangle distributions captured during
the SEJ process were used as input parameters
for this existing model, providing a structured
approach for parameterizing the population
attributes known to be relevant in the invasion
process. A series of models were run to simulate
the minimum, most likely, and maximum demo-
graphic scenarios based on all elicited parameter
values. When multiple expert responses existed,
the mean of the minimum, modal, and maximum
values was calculated, thereby allowing model
outputs to capture the average range and modal

 ❖ www.esajournals.org 6 April 2020 ❖ Volume 11(4) ❖ Article e03011

CHENERY ET AL.



values of expert uncertainty. All model runs were
carried out in the R statistical programming lan-
guage (R Development Core Team 2016).

To provide a generalized relationship between
demographic parameters and the expected time
to saturation across the recipient landscape (i.e.,
population development at available localities),
we used multiple regression to determine how
establishment potential and population growth
led to different saturation times across the recipi-
ent landscape (establishment potential and popu-
lation growth rate as predictors, and saturation
time or number of ports invaded at 20 yr as
response variables).

RESULTS

Variation in expert opinion: capturing uncertainty
Expert judgments varied widely, both within

and between taxonomic groups, deviating from
the mean by two orders of magnitude on average
(Table 2). Variation was consistently large across
all three scenarios (minimum, mode, and maxi-
mum) but, in all cases, showed no relationship
between the number of experts and the amount
of variation in the combined responses (e.g.,
mode: R2 = <0.001, F1,6 = <0.001, P = n.s,). Esti-
mates were less variable within each group when
estimating population growth (coefficient of vari-
ation [CV] 38–95%) but showed greater variation
in establishment parameters (CV 79–202%). Tri-
angular distributions were particularly useful in
visualizing both variation and consensus
between experts. For example, when estimating
establishment potential of the Red Swamp Cray-
fish, Procambarus clarkii, four out of five experts

consistently demonstrated confidence in their
estimates (small min–max variation), with a fifth
expert providing a wider estimate of between 25
and 1200 individuals/m3 required for establish-
ment success (Fig. 2A). Even in groups with a
large number of experts, such as fishes (n = 10),
we found more than half of all experts were in
close agreement of most likely (modal) values
(e.g., Tench, Tinca tinca, Fig. 2B). This trend was
generally true across all taxonomic groups; there-
fore, emphasis was placed on subsequent com-
parison of modal values when considering
variation between species groups.

Sensitivity of model outputs to calibration
weighting
Within their specialist taxonomic group,

experts showed similar performance-based scores
when compared with peers (SD < 2; Fig. 1). Zoo-
plankton experts showed the greatest within-
group variation in individual performance scores
(SD = 1.52) and, despite having the highest num-
ber of experts, the fishes group demonstrated
least variation (SD = 0.32). Compared with an
unweighted average, performance-based weight-
ing had a small effect on modal values of model
outputs (Table 3), indicating that results were not
overly sensitive to weighting. The mean differ-
ence in number of ports showed an average 1%
increase and saturation time (establishment of
one or more local populations in all five of the
Great Lakes) throughout the GLB an average
decrease of 6%. Within-group taxonomic varia-
tion was generally minimal, with half of all
groups showing no change in response to weight-
ing for numbers of ports invaded over time.

Table 2. Variation within expert judgments when estimating species’ establishment potential (number of individ-
uals), for minimum, most likely, and maximum scenarios.

(Scenario estimate)
Minimum Most likely (mode) Maximum

Species group (# spp.) [# experts] Mean CV (%) Mean CV (%) Mean CV (%)

Algae (12) [1] 22.92 57 117.92 164 238.33 162
Bacteria and Viruses (5) [2] 34.10 183 311.00 191 855.00 175
Bryozoans and Hydrozoans (3) [1] 1.00 0 10.00 0 100.00 0
Crayfishes (2) [5] 8.90 70 56.50 75 292.50 140
Fishes (10) [10] 33.49 136 116.62 138 421.23 246
Mollusks (8) [2] 11.54 168 105.42 182 1420.00 184
Plants (8) [2] 23.19 160 129.06 141 390.00 103
Zooplankton and Oligochaetes (12) [3] 13.72 171 238.36 158 2772.64 136

Notes: Mean is the average across all species within a species group and between experts where more than one expert exists.
Coefficient of variation (CV) allows comparison between groups, given different mean values.
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Fig. 2. Triangle probability distributions showing variation in raw expert estimates of establishment potential
(survey Q1. “minimum number of individuals for establishment success,” left) and rate of population growth
(survey Q2. “time to maximum population size,” right). Individual triangles represent the minimum, mode, and
maximum distribution of estimates per expert, related to a probability value. Estimates are for the following spe-
cies: (A) Red Swamp Crayfish, Procambarus clarkii, showing a generally high level of expert agreement. (B) Tench,
Tinca tinca, showing more uncertainty across experts. (C) Bloody Red Shrimp, Hemimysis anomala, showing more
agreement for establishment, but less for population growth.
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However, the expert group with the greatest
within-group variation (zooplankton) also
showed the most pronounced effect of perfor-
mance-based weighting, with an increase in num-
ber of ports by 4% and saturation time by 27%.

As experts were relatively consistent within their
taxonomic group, the assumptions of leaving
responses in their raw form—that all judgments
hold equal weight—remain valid as weighting
techniques imposed relatively small differences
on the resulting spread forecasts.

Spread scenarios for NIS in the Great Lakes
Based on modal average forecasts and the

unweighted method, all species groups demon-
strated the ability to fully saturate—that is to
become established in all five Great Lakes and
potentially also the St. Lawrence River—well
within the 20-yr time frame simulated in the
model (Fig. 3). Based on most likely estimates,
bacteria and viruses demonstrated the most
rapid rate of human-mediated spread (<5 yr for
saturation across the landscape), while fishes
took considerably longer to establish (>7 yr)
owing to generally reduced establishment poten-
tial and lower population growth rates. Both the
establishment and population growth parame-
ters were shown to be highly influential in pre-
dicting saturation time, defined as the time taken
to establish at all possible ports, (F2,57 = 452,
P < 0.0001, R2 = 0.941) and number of ports
invaded (F2.51,57 = 225.4, P < 0.0001, R2 = 0.888),

Table 3. Sensitivity of model outputs to combined (av-
erage) expert performance weighting.

No. of ports
invaded (20 yr) (%

change)

Time to establishment
in all lakes (yr) (%

change)

Algae 0 �1
Bacteria and
Viruses

0 7

Bryozoans
and
Hydrozoans

0 3

Crayfishes 1 5
Fishes 0 1
Mollusks 1 �3
Plants �1 5
Zooplankton
and
Oligochaetes

�4 27

Notes: Modal values are compared and reported as per-
centage change in one of two model outputs: (1) the number
of ports invaded at the end of a 20-yr model simulation and
(2) the time taken for a species to become established in all
five Great Lakes (saturation time, years). Negative values
indicate a faster rate of invasion.

0 5 10 15 20 25

Zooplankton & Oligochaetes

Plants

Mollusks

Fishes

Crayfishes

Bryozoans & Hydrozoans

Bacteria & Viruses

Algae

Saturation time (all 5 lakes)

Min
Mode
Max

Fig. 3. Model outputs of saturation times in the Great Lakes (defined as the number of years to establish in all
five lakes), based on combined average expert estimates. Minimum (fastest), modal (most likely), and maximum
(slowest) spread scenarios presented by combined species in each survey group.
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confirming that demographic factors matched
the mechanisms underlying the spread model.
Overall, the rate of spread exhibited by all taxo-
nomic groups was accelerating within the first
five years of introduction (Fig. 4), which is both a
feature of the logistic function used to model
population growth and the specific logistic
growth parameters identified by experts. A nota-
ble exception to this general finding is the Fresh-
water Jelly, Craspedacusta sowerbyi, for which
establishment potential was estimated to be high
(a = 0.34), but population growth is slow
(x0 = 12.5 yr), resulting in a greater than 20-yr
timeframe for saturation based on most likely
values (Fig. 4iii). Two groups (algae, and bacteria

and viruses) demonstrated little within-group
variation in their invasion timeline (Fig. 4i),
whereas over half of all groups had saturation
times and number of ports at 20 yr that were
highly species-specific. In particular, expert esti-
mates for mollusks (Fig. 4vi) and for zooplank-
ton and oligochaetes (Fig. 4viii) resulted in the
widest variation in spread rates at the species
level with a saturation time ranging 6–15 yr.

DISCUSSION

In many ways, this study reiterates the chal-
lenge of making informed management decisions
to control invasive species given the wide range
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based on expert averages for modal scenario estimates. *Freshwater Jelly, Craspedacusta sowerbyi, referenced in
text.

 ❖ www.esajournals.org 10 April 2020 ❖ Volume 11(4) ❖ Article e03011

CHENERY ET AL.



of spread dynamics exhibited at the species level.
However, the true utility of the joint-elicitation
modeling approach lies in the ability to capture
more than one form of uncertainty. This method
takes two processes that are understood mecha-
nistically (species establishment and population
growth, including the interactions of these bio-
logical processes with human pathways) and
captures the variability of both expert opinion
and model outputs. This overall variation arises
due to a combination of two forms of uncertainty
in this framework—a lack of current knowledge
(epistemic uncertainty) and because we cannot
predict such values precisely (stochastic varia-
tion). The distinction between types of uncer-
tainty is important, as it allows the interpretation
of model outputs from two perspectives: direct-
ing where further research may be useful to
reduce epistemic uncertainty and assisting with
the determination of relative risk for manage-
ment applications. Using triangular probability
distributions, we have demonstrated a simple
approach for capturing the variation within
expert estimates and elicited values. The
approach allows for computing a range of spe-
cies spread dynamics that may be of direct bene-
fit for rapid decision making. For example, in
considering the multiple expert responses
obtained for P. clarkii, the most likely spread
timeline can be determined based on the average
modal outcome and management response struc-
tured according to this scenario while recogniz-
ing the trade-offs involved if the minimum or
maximum scenarios were to occur. (Fig. 2A).
This technique has clear advantages over other
best-guess methods, where SEJ has generated a
series of hypotheses formed as best- and worst-
case alternatives that may be evaluated in
advance in a management decision-making con-
text or in real time as actual spread progresses.
This usefully allows these outcomes to be consid-
ered in the face of ecological and socioeconomic
trade-offs, while flexibly allowing the incorpora-
tion of new expert estimates as knowledge about
a species or system increases. Most species
assessed here were forecast to spread on the scale
of decades, rather than centuries. Understanding
the range of spread dynamics presented may
allow managers to further refine and justify an
appropriate response in a species-specific scenar-
io, for example, weighing the potential

ecological, social, and economic value of delay-
ing spread by a certain number of years, given
that saturation may be possible in just one or two
decades. On a larger scale, this understanding
may provide concrete information to managers
about how much time is available to enact
spread prevention measures before a species
establishes in multiple lake basins. Finally, by
enabling integration of different risk scenarios,
such methods may also account more fully for
risk tolerance as part of the decision-making pro-
cess, such as the ability to justify management
intervention when spread scenarios differ.
There are, of course, caveats to this approach.

Following a thorough review of studies testing
the accuracy of expert judgments, Burgman
(2005) concluded that expert opinions tend to
show consistent bias and are habitually overcon-
fident (Burgman 2005). This, as with any form
of model parameterization, means particular
care must be taken to avoid opinion biasing
model outputs (Kuhnert 2011). Following a
structured method helps to ensure careful
design of the survey process to better control
against bias early on—incorporating steps such
as testing the clarity of questions and choosing
to elicit values in units familiar to the expert
(Table 4). Such considerations are likely to make
for more successful incorporation of expert judg-
ments within a model framework. In addition,
there are several methods for mitigating the
effects of, or correcting for, confidence and other
forms of bias, of which testing expert perfor-
mance is often identified (Cooke and Goossens
2000, Cooke et al. 2014). The performance-based
weightings tested here suggest it may not
always be necessary to weight experts when
joining their estimates with modeling processes,
particularly where multiple elicitations are run
alongside one another making judgments
between groups noncomparable; however, addi-
tional research into the minimum number of
training questions required would be valuable
(Aspinall 2010, Cooke et al. 2014). The results of
our sensitivity analysis to performance-based
weighting suggest that, in cases where experts
are performing equally within-group, outputs
may demonstrate negligible effects (Table 3). In
even the most disparate and heavily weighted
group, zooplankton and oligochaetes, the total
number of ports invaded at the end of a 20-yr
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simulation varied by an average of just 4%. In
groups with a single expert or low within-group
variation (e.g., fishes, n = 10, SD = 0.32),
weighted data varied from unweighted data by
zero or 1%. This suggests that incorporating
expert opinion within a modeling framework
may, in some cases, form a more robust means
of prediction than opinion alone, where the
mechanisms behind parameter estimates and,
therefore, confidence in model structure are well
understood. It is important to note that such
analyses are a critical component of model for-
mulation and, in cases where parameter sensi-
tivity is high, the necessity of expert accuracy

and weighting would be of greater importance
in ensuring the validity of model outputs.
One of the greatest challenges in managing

invasive species is determining suitable actions in
the absence of biological data. By treating all spe-
cies consistently, we created a uniform and stan-
dardized approach to predicting the potential
spread of species, based on a common currency
(demographic parameters underlying establish-
ment and population growth). Spread is an
important part of the probability of introduction
component of ecological risk assessment (Man-
drak and Cudmore 2015). In conjunction with
magnitude of impacts, not only does spread

Table 4. Framework for joining expert opinion and modeling methods.

Process Description Literature

1. Defining
research question

Consideration of the type of model available to answer the defined
research question, and whether the parameters required could
feasibly be estimated using expert opinion.
1. Expertise available: Do specialists exist in that taxonomic or

subject area?
2. Potential of knowledge transfer: Can the parameters required

be reasonably estimated?
3. Time and resources available for study: Based on expert geo-

graphic location and researcher availability, can the study be
conducted in person or is a remote elicitation process neces-
sary?

General guidelines
Burgman (2005)

Low Choy et al. (2009)
Martin et al. (2012)
Drescher et al. (2013)

2. Survey design Experts are chosen and a survey created with specific questions
relating to the parameters required for the model.
1. Appropriate format chosen: for example, face-to-face, e-mail,

and online
2. Questions do not “lead” but guide expert: bias avoided in elici-

tation questions as well as responses
3. Calibration/training questions designed

Identifying and avoiding biases
Tversky and Kahneman (1974)

Kynn (2008)

3. Expert elicitation Run elicitation (data collection). A decision should also be made as
to how multiple expert judgments will be combined (if applicable).
1. Based on parameters required, decide if will use direct or indi-

rect elicitation. That is, is it possible for experts to estimate val-
ues in units that are familiar, or will additional data
manipulation be required?

2. Determine number of experts to be consulted, and obtain con-
firmation of willingness to participate.

3. Process for combining multiple expert judgments/incorpora-
tion of calibration or performance-based weighting decided (if
applicable), or equally weighted averaging

Elicitation software
James et al. (2010)
Fisher et al. (2011)

Calibration and combination of
expert judgments
Cooke (1991)

Burgman et al. (2011)
Cooke (2015)

4. Model encoding
and analysis

Joining expert outputs with modeling techniques to answer the
research question.
1. Synthesis expert data: clean and ensure in correct format for

encoding within model.
2. Model simulations run sensitivity analysis conducted to con-

sider both the variation and sensitivity of expert estimates
within the model.

3. Analysis of outputs testing research hypothesis: statistical anal-
ysis to determine significance of outputs and acceptance or
rejection of research statement

Models
(Bayesian)

Low Choy et al. (2009)
Kuhnert et al. (2010)

(Species richness/distributions)
Murray et al. (2009)
Fisher et al. (2011)

Wittmann et al. (2014a)
(Food web)

Wittmann et al. (2014b)
Zhang et al. (2016)
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contribute to calculating overall risk (Mandrak
and Cudmore 2015) but also may provide a time-
frame on which the risk may be realized, as does
our model. Not all species are likely to exhibit the
same rates of secondary spread, even within a tax-
onomic group, suggesting that the key advantage
of the joint-elicitation modeling method is the
ability to reduce uncertainty in the trajectory of
secondary spread. Simberloff (2003) described the
perils of failing to act early in the eradication win-
dow and was strongly in support of applying the
precautionary principle to contain new invasions.
The arguments against rapid action are that not
all species will successfully establish, nor will they
all have ecological impacts (Williamson and Fitter
1996). In practical terms, this means that under-
taking control prior to widespread population
expansion may be difficult to justify to managers
and stakeholders in the absence of expectations
that spread may be rapid and widespread. Joining
existing mechanistic models with expert opinion,
therefore, contributes significantly to defining
how much data are required to make eradication
and control decisions, by providing an alternative

means to forecast spread trajectories and invasion
dynamics, leading to informed decisions in a rela-
tively short period of time. Similarly, studies com-
bining joint methods allow researchers to obtain
broad estimates of species invasion potential,
exploring the relationship between standard vari-
ables that allow comparison across taxonomic
groups in a unified way.
The ability to identify broad relationships

between species-specific demographic parame-
ters and rates of spread has profound implica-
tions for understanding how invasive species
interact with human pathways. Our findings
have shown that the rate of spread is driven by
key demographic parameters and their interac-
tion with human-mediated mechanisms of move-
ment. On average, species with low detection
probabilities, such as bacteria and viruses,
demonstrated the potential to spread rapidly and
extensively within the GLB, thereby presenting
significant threats to recipient ecosystems. Fishes
demonstrated similar saturation times based on
their most likely trajectories of spread, whereas
plants and zooplankton exhibited far wider and

Fig. 5. Species-specific combinations of demographic parameters against saturation time throughout the Great
Lakes and St. Lawrence River Basin, based on modal expert estimates (unweighted average with multiple
experts). Species codes can be found in Appendix S1. x0 represents time to 50% of maximum population size,
whereas a is the natural logarithm of the per-propagule probability of establishment, based on the formulation in
Leung et al. (2004).
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less predictable spread rates within their respec-
tive groups (Fig. 5). These patterns point to a
generalized index of spread that could account
for both spread and potential impact of a species
based on taxonomic group. One key benefit of
this approach is that it moves a step closer to pro-
viding a broad framework for rapid decision
making by using taxonomic group as a decision-
making variable.

We have shown that joining expert-elicitation
methods with mechanistic models can be used to
predict species dynamics in the absence of pub-
lished or experimental data, thereby providing
valuable estimates of ecological phenomena in the
absence of empirical information. The main limi-
tations lie in interpretation—expert judgment is
not intended to replace empirical data, but to
enable decisions to be made despite ongoing
uncertainty. Obtaining multiple estimates from
experts for the same parameter allows modelers
to make more informed choices when parameter-
izing their models and using a process such as SEJ
provides a much-needed standardization for what
is otherwise an unregulated process. It might be
expected that as expert elicitation becomes more
widely accepted in ecology, the quality of expert
information should increase in both informative-
ness and accuracy in line with expert familiarity
and proficiency in responding to structured-
survey methods (Cooke 1991). This joint approach
may be beneficial beyond invasion ecology, such
as estimating vital parameters for population via-
bility analyses in endangered species manage-
ment or estimating expected recovery times of
newly restored habitats or protected areas based
on existing scientific knowledge.
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